

Backward Conformal Prediction

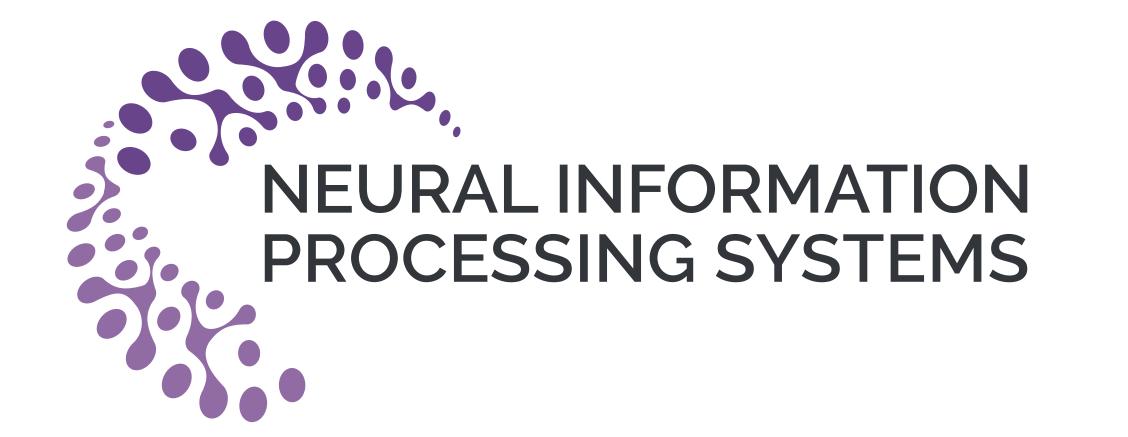
Etienne Gauthier¹

Francis Bach¹

Michael I. Jordan^{1,2}

¹ Inria, ENS, PSL University

² UC Berkeley

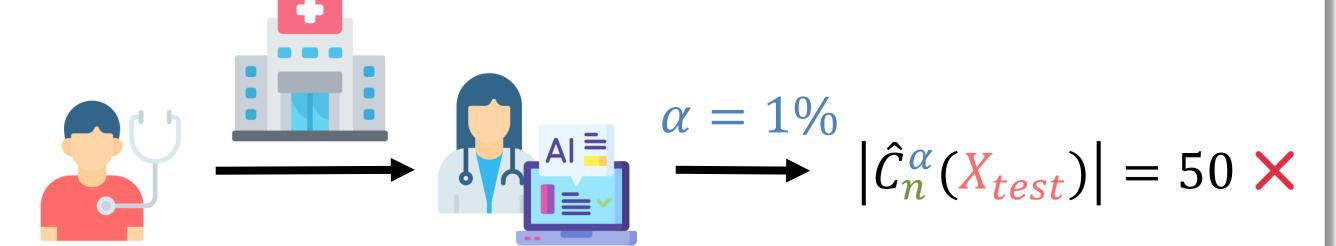


Motivation

Conformal Prediction

- **Setup:** score function $S: X \times Y \to \mathbb{R}$, calibration set $\{(X_i, Y_i)\}_{i=1}^n$, test point (X_{test}, Y_{test}) , user pre-specified miscoverage α .
- **Assumption:** data drawn exchangeably $\sim \mathbb{P}$.
- Goal: build a prediction set $\hat{C}_n^{\alpha}(X_{test})$ achieving marginal coverage:

$$\mathbb{P}\left(Y_{test} \in \hat{C}_n^{\alpha}(X_{test})\right) \geq 1 - \alpha.$$



$$\begin{array}{c} \alpha = 2\% \\ \longrightarrow & |\hat{C}_n^{\alpha}(X_{test})| = 5 \end{array}$$

- Small values of α can lead to uninformative prediction sets.
- One may instead aim for prediction sets of maximal allowed size.

Approach

- Size constraint rule: $\mathcal{T}(\{(X_i, Y_i)\}_{i=1}^n, X_{test}) \in \{1, ..., |Y|\}.$
- Define: $\tilde{\alpha} := \inf \left\{ \alpha \in (0,1) : \left| \hat{C}_n^{\alpha}(X_{test}) \right| \leq \mathcal{T}(\{(X_i, Y_i)\}_{i=1}^n, X_{test}) \right\}$, the smallest α such that the prediction set satisfies the size constraint.

Guarantees

- Size: $\left|\hat{C}_n^{\widetilde{\alpha}}(X_{test})\right| \leq \mathcal{T}(\{(X_i, Y_i)\}_{i=1}^n, X_{test}).$
- Marginal coverage: $\mathbb{P}\left(Y_{test} \in \hat{C}_n^{\alpha}(X_{test})\right) \gtrsim 1 \mathbb{E}[\tilde{\alpha}].$

 $\mathbb{E}[\widetilde{\alpha}]$ is unknown but it can be estimated using $\{(X_i, Y_i)\}_{i=1}^n$.

Conformal Prediction

 \blacksquare Input: α

Output: prediction set + size

Control coverage → **size follows** Guarantee: coverage exact, size unknown

Backward Conformal Prediction

 igwedge Input: size constraint ${\mathcal T}$ Output: implied $\tilde{\alpha}$ + prediction set

Control size → **coverage follows** Guarantee: size exact, coverage estimated

Coverage Estimation

Strategy: Leave-One-Out

$$(X_1, Y_1)$$
 (X_2, Y_2) (X_3, Y_3) ... (X_n, Y_n) \longrightarrow $\tilde{\alpha}$

$$(X_1, Y_1)$$
 (X_2, Y_2) (X_3, Y_3) ... (X_n, Y_n) $\tilde{\alpha}_2$

$$(X_1, Y_1)$$
 (X_2, Y_2) (X_3, Y_3) ... (X_n, Y_n) \longrightarrow $\hat{\alpha}$

$$(X_1, Y_1)$$
 (X_2, Y_2) (X_3, Y_3) ... (X_n, Y_n) \longrightarrow $\tilde{\alpha}_r$

$$\hat{\alpha}^{LOO} \coloneqq \frac{1}{n} \sum_{i=1}^{n} \tilde{\alpha}_i$$

Works for all e-value-based prediction sets

of the form:

 $\hat{C}_n^{\alpha}(X_{test}) \coloneqq \{y : E_n < 1/\alpha\} \text{ with } \mathbb{E}[E_n] \le 1.$

Example: $E_n = \frac{(n+1)S(X_{text},Y_{test})}{\sum_{i=1}^{n} S(X_i,Y_i) + S(X_{text},Y_{test})}$.

Intuition: mimics test-time behavior by treating each calibration point as unseen.

Theoretical Properties

Under mild regularity assumptions:

$$|\hat{\alpha}^{LOO} - \mathbb{E}[\tilde{\alpha}]| = O_P(n^{-1/2}),$$

$$\operatorname{Var}(\hat{\alpha}^{LOO}) = O_P(n^{-1}).$$

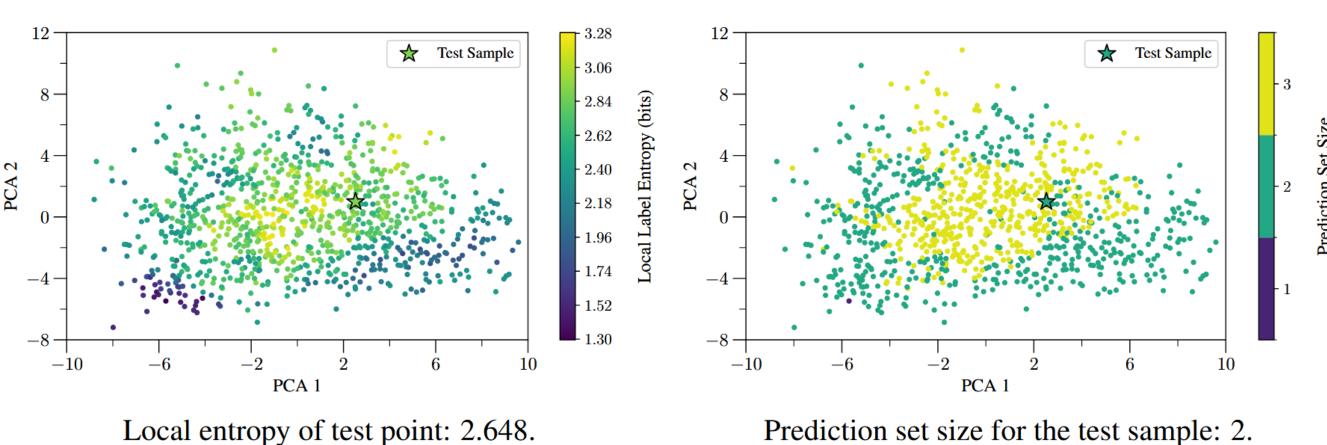
Experiments

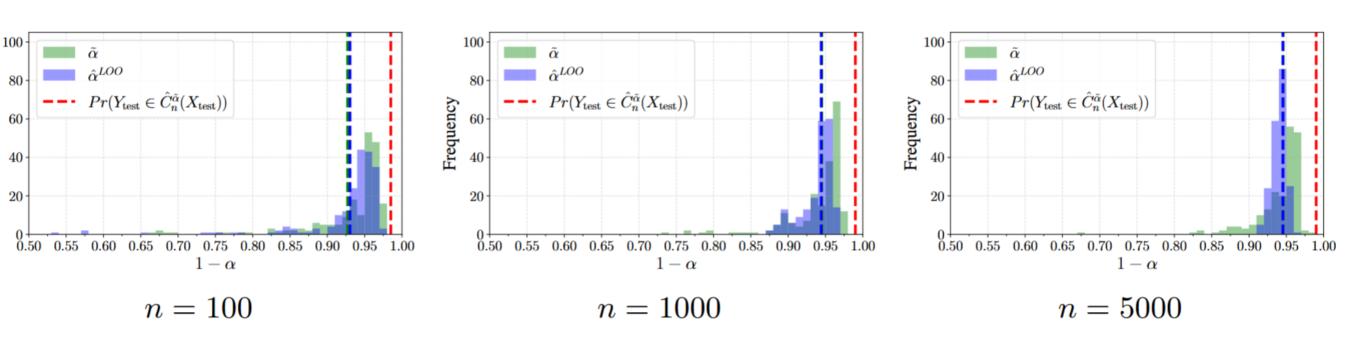
Setup

- Dataset: CIFAR-10 (50K training / 10K test images, 10 classes).
- Score: cross-entropy $S(x,y) = -\log p_f(y|x)$, for pretrained model f.

Size constraint rule

- Feature extraction + PCA + k-NN based local entropy + binning.
- Intuition: features associated with high label variability, as estimated on the calibration set, correspond to greater uncertainty and should be assigned larger prediction sets.





Takeaway: a principled alternative framework for decision-making under resource constraints.

PAPER

CODE