
● We derive a high-probability lower bound on         , fully computable by 
the collective, which take the following form up to            error terms:

● Interpretation: As the collective size         grows, features     are 
planted one by one, breaking in order of decreasing resistance.
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Framework Overview Example: Signal Planting

● Synthetic tabular dataset: Simulated vehicle data with features like 
Model Type, Fuel Type, and Country of Manufacture, labeled by 
evaluation (Excellent, Good, Average, Poor). Fixed transformation   .

● Study how collectives can influence learning platforms by 
strategically modifying their data in a coordinated way.

Motivation

● Platform uses data from an i.i.d. population to train an algorithm.
● A subset (the collective) wants to steer the algorithm’s behavior.
● Collective can modify features/labels via a shared strategy.

Problem Setting

● Platform: Trains a classifier on a dataset of   consumers                               
initially drawn i.i.d. from a distribution     over            .

● Collective: The subset         of              consumers applies a shared strategy                          
. to influence the platform, yielding a modified dataset         .   

● Data Model: 

○ Each data point:                             (finite universe).

○ Collective creates a modified empirical distribution     by applying    .                                  

Setup

Signal planting for different target labels. For example, the lower bound for Poor 
suggests 10% of agents are needed to plant the signal, but in practice only 5% suffice.

As      grows, collectives of the 
same proportion achieve 
better success bounds. Larger 
platforms face higher risks 
from collective action.

Dataset

● Limited information: The collective lacks access to platform 
internals and the rest of the population, requiring inference of key 
parameters and strategies from local data.

● Goal: Assess the collective's impact as a function of its size.

Challenges

Platform

Modified data

Collective
Rest of the 
population

Training 
distribution 𝒫

Learning classifier

Test distribution
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● The collective knows the total number of users .
● It does not know the data of non-collective users.
● It can pool its own data to estimate distributions, parameters, and success of 

strategy     with concentration inequalities (e.g., Hoeffding).

● Platform behavior: selects a classifier    that is Bayes-optimal for a distribution 

within total variation    of    .

● Collective goal: influence test-time performance on                         by optimizing  

success metric         : 

Assumptions

Agent behaviors

Three Different Objectives

Signal Planting: Signal Unplanting: Signal Erasing:

Results

● For each objective, we analyze strategies and derive strategy-dependent high-

probability lower bounds on        .

Indicates the prevalence of the modified feature in the 
modified dataset: the more frequently 𝑥 appears in the 

poisoned data, the greater the collective’s ability to 
influence the associated label (proportional to 𝑛/𝑁).

Captures how non-collective individuals hinder the collective’s 
ability to plant the signal, reflecting how strongly the target label 

is tied to the features 𝑥; if other labels are far more likely than 𝑦∗, 
planting the signal becomes more difficult (scales with 1 − 𝑛/𝑁).

Platform robustness 
(increasing function 

of ɛ).  
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● Natural strategy: flood the platform with                                    .

Strategy

Experimental Evaluation

Theoretical Lower Bound

Signal erasing

Success

Objective Signal planting Signal unplanting


