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Numerous examples of collectives 
emerging to strategically influence 

platforms 

➢ Uber drivers deactivate the app to create a supply shortage and 
drive up prices

➢ Facebook users relocalized themselves to Standing Rock to disrupt 
surveillance and blur police tracking

➢ Waze users falsely report accidents to 
keep traffic out of their neighborhoods

➢ Amazon users coordinate to post fake reviews, 
manipulating ratings and search rankings



Initially, each user is drawn 
from the same probability 

distribution 𝒟 over feature-
label pairs X×Y
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Collective members share their 
data to identify effective 

strategies and anticipate their 
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Collective members modify 
their data, which is then 

observed alongside that of the 
rest of the population
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Modified data

The platform learns from the 
training data and uses the 
resulting model to make 

predictions on a test distribution

➢ Pooling their data lets the 
collective obtain statistical 
guarantees about their 
impact
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➢ Results: for each objective, we analyze
strategies that the collective can set 
and we derive strategy-dependent
high-probability lower bounds on 𝑆(𝑛)
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Beyond This Talk: What’s in the Paper

❑ General Framework: formal modelization

❑ Different Objectives: signal planting, unplanting, and erasing

❑ More Strategies: feature-label vs feature-only, adaptive vs 
static

❑ Theory: explicit lower bounds, algorithmic implementations

❑ Parameters Influence: how impact varies with collective size 
𝑛 and number of consumers 𝑁
➢ platforms interacting with large user bases are more exposed to 

collectives altering their data



Conclusion

❑ By sharing their data, collectives can infer and put into 
practice impactful strategies

❑ Our approach enables collectives to anticipate their potential 
impact on learning platforms

❑ Opens new directions for understanding multi-agent 
influence on learning platforms
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